PeV neutrinos from right-handed neutrino dark matter

Ryosuke Sato (KEK)

Kou Enerugii Kasokuki Kenkyu Kikou 高エネルギー加速器研究機構

High Energy Accelerator Research Origanization

"Neutrinoful Universe", Tetsutaro Higaki, Ryuichiro Kitano, RS, [arXiv:1405.0013], JHEP 1407(2014)044

Mysteries in our universe

The standard model achieved a big success.

But, it might be extended to explain mysteries in our universe...

- Neutrino mass
- Inflation
- Baryon asymmetry
- Dark matter
- IceCube??

We try to explain all of them!

IceCube experiment

IceCube is located at the south pole. Its volume is around 1km³.

[http://www.icecube.umd.edu/~goodman/IceCube.htm]

IceCube experiment

IceCube is located at the south pole. Its volume is around 1km³.

Detection principle

Incoming neutrino hits material by Neutral Current / Charged Current interaction.

Electromagnetic / hadronic shower creates a lot of energetic particles. Energetic charged particles emit **Cherenkov light**.

3 years observation

5.7 sigma deviation from Atmospheric neutrino background! Origin of high energy neutrino is **extraterrestrial**.

[IceCube Collaboration, arXiv:1405.5303]

Darkmatter???

3 years observation

5.7 sigma deviation from Atmospheric neutrino background!

Origin of high energy neutrino is extraterrestrial.

[IceCube Collaboration, arXiv:1405.5303]

Darkmatter???

"Ernie"

Outline

1. Model

- Yukawa couplings for right-handed neutrinos
- Neutrino masses

Inflation and reheating

- Inflation
- Non-thermal leptogenesis
- Non-thermal dark matter production

3. PeV neutrino from decaying dark matter

High energy neutrino events at the IceCube experiment

1. Model

Our model

Standard model

- + 3 right-handed neutrinos w/ Majorana masses
- + U(1)B-L gauge symmetry & B-L Higgs boson

$$\mathcal{L} = \mathcal{L}_{SM} - \left(y_{\nu}^{ij} H N_{i} \ell_{j} + \frac{\lambda_{i}}{2} \phi_{B-L} N_{i}^{2} + h.c. \right) - \kappa \left(|\phi_{B-L}|^{2} - \frac{v_{B-L}^{2}}{2} \right)^{2}$$

We assume y₁₁'s are **extremely small but non-zero**.

• Suppressed by Z_2 parity : $(N_1 \rightarrow -N_1)$

$$y_{\nu} = \begin{pmatrix} \ll 1 & \ll 1 & \ll 1 \\ y_{\nu}^{21} & y_{\nu}^{22} & y_{\nu}^{23} \\ y_{\nu}^{31} & y_{\nu}^{32} & y_{\nu}^{33} \end{pmatrix}$$

N1 can be a candidate of decaying darkmatter.

Why small but non-zero y1i?

We assume that Z₂ parity $(N_1 \rightarrow -N_1)$ is conserved classically, but violated by some quantum effect.

e.g., we can write, $\mathcal{O} \sim \frac{1}{\Lambda^{14}} (\ell_1 \ell_2) (\ell_2 \ell_3) (\ell_3 \ell_1) e_1^c e_2^c e_3^c N_1^c N_2^c N_3^c$ (such a operator may be generated by some non-perturbative effect.)

$$y_{\nu}^{1k} \sim \text{ (very small number)}$$
 $\times (\det y_e) \epsilon^{ijk} y_{\nu}^{2i} y_{\nu}^{3j}$

Normal hierarchy
$$\rightarrow y_{\nu}^{1k} \propto U_{k1}$$

$$|y_{\nu}^{1e}|^2 : |y_{\nu}^{1\mu}|^2 : |y_{\nu}^{1\tau}|^2 \simeq 0.7 : 0.2 : 0.1$$

Inverted hierarchy
$$\to y_{\nu}^{1k} \propto U_{k3}$$

 $|y_{\nu}^{1e}|^2:|y_{\nu}^{1\mu}|^2:|y_{\nu}^{1\tau}|^2\simeq 0.02:0.38:0.6$

Neutrino masses

Neutrino mass is generated by seesaw mechanism.

RH neutrino sector in our model is essentially two RH neutrino model.

[Frampton, Glashow, Yanagida (2002)]

$$\begin{pmatrix}
\langle H \rangle & \tilde{M} & \langle H \rangle \\
\tilde{y}_{\nu} & \chi & \tilde{y}_{\nu}
\end{pmatrix}$$

$$y_{\nu} = \begin{pmatrix}
\sim 0 & \sim 0 & \sim 0 \\
y_{\nu}^{21} & y_{\nu}^{22} & y_{\nu}^{23} \\
y_{\nu}^{31} & y_{\nu}^{32} & y_{\nu}^{33}
\end{pmatrix}$$

$$\tilde{y}_{\nu}$$

$$V_{L}$$

$$\nu_{L}$$

$$V_{L}$$

Neutrino mass matrix:

$$m_{\nu} = \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix} = (U^T \tilde{y}_{\nu}^T \tilde{M}^{-1} \tilde{y}_{\nu} U) \langle H \rangle^2$$
 Rank 2 matrix Lightest neutrino is massless.

$$\Delta m_{21}^2 \simeq 7.5 \times 10^{-5} \text{ eV}^2$$
, $\Delta m_{31}^2 \simeq 2.5 \times 10^{-3} \text{ eV}^2$ [Particle Data Group]

a) Normal hierarchy $m_1 < m_2 < m_3$ $m_1 = 0 \text{ eV}$, $m_2 \simeq 0.0087 \text{ eV}$, $m_3 \simeq 0.048 \text{ eV}$

) Inverted hierarchy $m_3 < m_1 < m_2$ $m_1 \simeq 0.048 \; \mathrm{eV}, \quad m_2 \simeq 0.049 \; \mathrm{eV}, \quad m_3 = 0 \; \mathrm{eV}$

2. Inflation and reheating

Thermal history

- Inflation (drived by B-L Higgs boson)
- Reheating (B-L Higgs boson to RH neutrinos)
 - Leptogenesis (decay of 2nd lightest RH neutrino)
 - Non-thermal Dark matter production (lighetst RH neutrino)

Inflation by B-L Higgs boson

$$V(\phi) = \frac{\kappa}{4} \left(\phi^2 - v_{B-L}^2 \right)^2 \qquad \left(\phi_{B-L} = \frac{1}{\sqrt{2}} \left(\phi + iG \right) \right) \quad \text{[Okada, Shafi (2013)]}$$

We have two choices for initial condition.

Hilltop-type

Chaotic-type

Inflation with BICEP2

$$V(\phi) = \frac{\kappa}{4} \left(\phi^2 - v_{B-L}^2 \right)^2$$

CMB observation suggests $m_{\phi} \sim 10^{13} \; \text{GeV}$

Chaotic type initial condition with v_{B-L} / M_{Pl} > 5 is consistent with BICEP2 data.

[16/31]

Inflation without BICEP2

$$V(\phi) = \frac{\kappa}{4} \left(\phi^2 - v_{B-L}^2 \right)^2$$

CMB observation suggests $m_{\phi} \sim 10^{13} \; \text{GeV}$

Hilltop type initial condition with v_{B-L} / M_{Pl} = 15-30 is consistent with Planck data.

[17/31]

Reheating and decay products

Inflaton decays into RH neutrinos : $\phi \rightarrow N_i N_i$

Number of φ per entropy at the time of reheating

$$\frac{n_{\phi}}{s} = \frac{\rho_{\phi}/m_{\phi}}{s} = \frac{3}{4} \frac{T_R}{m_{\phi}}$$

Tr is reheating temperature, which is determined from $H(T_R) = \Gamma_{\phi}$

H: Hubble expansion rate Γ_{ϕ} : decay width of inflaton

Reheating and decay products

Inflaton decays into RH neutrinos : $\phi \to N_i N_i$ $\mathcal{L} \ni -\frac{M_i}{2v_{B-L}} \phi N_i N_i$

Number of ϕ per entropy at the time of reheating

$$\frac{n_{\phi}}{s} = \frac{\rho_{\phi}/m_{\phi}}{s} = \frac{3}{4} \frac{T_R}{m_{\phi}}$$

Tr is reheating temperature, which is determined from $H(T_R) = \Gamma_{\phi}$

H: Hubble expansion rate Γ_{ϕ} : decay width of inflaton

Number density of decay products

$$\frac{n_{N_1}}{s} \simeq \frac{3}{4} \frac{T_R}{m_{\phi}} \times 2 \times \text{Br}(\phi \to N_1 N_1)$$

$$\frac{n_{N_2}}{s} \simeq \frac{3}{4} \frac{T_R}{m_\phi} \times 2 \times \text{Br}(\phi \to N_2 N_2)$$

$$\frac{n_B}{s}$$

$$\frac{n_B}{s} \simeq \frac{n_{N_2}}{s} \times \frac{\Gamma(N_2 \to \ell H) - \Gamma(N_2 \to \bar{\ell} H^{\dagger})}{\Gamma(N_2 \to \ell H) + \Gamma(N_2 \to \bar{\ell} H^{\dagger})} \times \left(-\frac{28}{79}\right)$$

We assume
$$M_1 \ll M_2 < m_\phi < M_3$$
 $\begin{cases} \operatorname{Br}(\phi \to N_1 N_1) & \simeq M_1^2/M_2^2 \\ \operatorname{Br}(\phi \to N_2 N_2) & \simeq 1 \end{cases}$
$$T_R \simeq 2 \times 10^7 \text{ GeV} \left(\frac{M_2}{10^{12} \text{ GeV}}\right) \left(\frac{m_\phi}{10^{13} \text{ GeV}}\right)^{1/2} \left(\frac{v_{B-L}}{5 M_{\text{Pl}}}\right)^{-1}$$

$$\Omega_{N_1} \simeq 0.2 \left(\frac{M_1}{4 \text{ PeV}}\right)^3 \left(\frac{M_2}{10^{12} \text{ GeV}}\right)^{-1} \left(\frac{m_\phi}{10^{13} \text{ GeV}}\right)^{-1/2} \left(\frac{v_{B-L}}{5 M_{\text{Pl}}}\right)^{-1}$$

$$\frac{n_B}{s} \bigg|_{\max} \simeq \left(\frac{M_2}{10^{12} \text{ GeV}}\right)^2 \left(\frac{m_\phi}{10^{13} \text{ GeV}}\right)^{-1/2} \left(\frac{v_{B-L}}{5 M_{\text{Pl}}}\right)^{-1} \times \begin{cases} 1 \times 10^{-10} & \text{(Normal hierarchy)} \\ 2 \times 10^{-12} & \text{(Inverted hierarchy)} \end{cases}$$
 (Upper bound on e depends on mass hierarchy)

We assume
$$M_1 \ll M_2 < m_\phi < M_3$$
 $\begin{cases} Br(\phi \to N_1 N_1) & \simeq M_1^2/M_2^2 \\ Br(\phi \to N_2 N_2) & \simeq 1 \end{cases}$

$$T_R \simeq 2 \times 10^7 \text{ GeV} \left(\frac{M_2}{10^{12} \text{ GeV}}\right) \left(\frac{m_\phi}{10^{13} \text{ GeV}}\right)^{1/2} \left(\frac{v_{B-L}}{5 M_{\text{Pl}}}\right)^{-1}$$

$$\Omega_{N_1} \simeq 0.2 \left(\frac{M_1}{4 \text{ PeV}}\right)^3 \left(\frac{M_2}{10^{12} \text{ GeV}}\right)^{-1} \left(\frac{m_\phi}{10^{13} \text{ GeV}}\right)^{-1/2} \left(\frac{v_{B-L}}{5 M_{\text{Pl}}}\right)^{-1}$$

$$\frac{n_B}{s} \bigg|_{\text{max}} \simeq \left(\frac{M_2}{10^{12} \text{ GeV}}\right)^2 \left(\frac{m_\phi}{10^{13} \text{ GeV}}\right)^{-1/2} \left(\frac{v_{B-L}}{5 M_{\text{Pl}}}\right)^{-1} \times \begin{cases} 1 \times 10^{-10} & \text{(Normal hierarchy)} \\ 2 \times 10^{-12} & \text{(Inverted hierarchy)} \end{cases}$$
(Upper bound on e depends on mass hierarchy)

[21/31]

We assume
$$M_1 \ll M_2 < m_\phi < M_3$$

$$\begin{cases} \operatorname{Br}(\phi \to N_1 N_1) & \simeq M_1^2/M_2^2 \\ \operatorname{Br}(\phi \to N_2 N_2) & \simeq 1 \end{cases}$$

$$T_R \simeq 2 \times 10^7 \text{ GeV} \left(\frac{M_2}{10^{12} \text{ GeV}}\right) \left(\frac{m_\phi}{10^{13} \text{ GeV}}\right)^{1/2} \left(\frac{v_{B-L}}{5 M_{\text{Pl}}}\right)^{-1}$$

$$\Omega_{N_1} \simeq 0.2 \left(\frac{M_1}{4 \text{ PeV}}\right)^3 \left(\frac{M_2}{10^{12} \text{ GeV}}\right)^{-1} \left(\frac{m_\phi}{10^{13} \text{ GeV}}\right)^{-1/2} \left(\frac{v_{B-L}}{5 M_{\text{Pl}}}\right)^{-1}$$

$$\frac{n_B}{s} \bigg|_{\text{max}} \simeq \left(\frac{M_2}{10^{12} \text{ GeV}}\right)^2 \left(\frac{m_\phi}{10^{13} \text{ GeV}}\right)^{-1/2} \left(\frac{v_{B-L}}{5 M_{\text{Pl}}}\right)^{-1} \times \begin{cases} 1 \times 10^{-10} & \text{(Normal hierarchy)} \\ 2 \times 10^{-12} & \text{(Inverted hierarchy)} \end{cases}$$
(Upper bound on e depends on mass hierarchy)

[22 / 31]

We assume
$$M_1 \ll M_2 < m_\phi < M_3$$

$$\begin{cases} \operatorname{Br}(\phi \to N_1 N_1) & \simeq M_1^2/M_2^2 \\ \operatorname{Br}(\phi \to N_2 N_2) & \simeq 1 \end{cases}$$

$$T_R \simeq 2 \times 10^7 \text{ GeV} \left(\frac{M_2}{10^{12} \text{ GeV}}\right) \left(\frac{m_\phi}{10^{13} \text{ GeV}}\right)^{1/2} \left(\frac{v_{B-L}}{5 M_{\text{Pl}}}\right)^{-1}$$

$$\Omega_{N_1} \simeq 0.2 \left(\frac{M_1}{4 \text{ PeV}}\right)^3 \left(\frac{M_2}{10^{12} \text{ GeV}}\right)^{-1} \left(\frac{m_\phi}{10^{13} \text{ GeV}}\right)^{-1/2} \left(\frac{v_{B-L}}{5 M_{\text{Pl}}}\right)^{-1}$$

$$\frac{n_B}{s} \Big|_{\text{max}} \simeq \left(\frac{M_2}{10^{12} \text{ GeV}}\right)^2 \left(\frac{m_\phi}{10^{13} \text{ GeV}}\right)^{-1/2} \left(\frac{v_{B-L}}{5 M_{\text{Pl}}}\right)^{-1} \times \begin{cases} 1 \times 10^{-10} & \text{(Normal hierarchy)} \\ 2 \times 10^{-12} & \text{(Inverted hierarchy)} \end{cases}$$
(Upper bound on e depends on mass hierarchy)

 M_2 Dark matter

10¹² GeV

Our model is consistent with PeV dark matter! O(1) PeV M_1 O(1) PeV O(1) PeV

[23/31]

3. PeV neutrinos from dark matter

Decay of dark matter

$$\mathcal{L} \ni -y_{\nu,1j}HN_1\ell_j - \frac{M_1}{2}N_1^2$$

Lifetime

$$au_{N_1} \sim 10^{29} \text{ s} \left(\frac{M_1}{1 \text{ PeV}} \right) \left(\frac{\sqrt{\sum_i |y_{1i}|^2}}{10^{-29}} \right)^{-2}$$

Decay modes and branching fractions

$$e^{\pm}W^{\mp}$$
 $\nu_{e}Z$, $\bar{\nu}_{e}Z$ $\nu_{e}h$, $\bar{\nu}_{e}h$
 $\mu^{\pm}W^{\mp}$ $\nu_{\mu}Z$, $\bar{\nu}_{\mu}Z$ $\nu_{\mu}h$, $\bar{\nu}_{\mu}h$
 $\tau^{\pm}W^{\mp}$ $\nu_{\tau}Z$, $\bar{\nu}_{\tau}Z$ $\nu_{\tau}h$, $\bar{\nu}_{\tau}h$

Decay of dark matter

$$\mathcal{L} \ni -y_{\nu,1j}HN_1\ell_j - \frac{M_1}{2}N_1^2$$

Lifetime

$$au_{N_1} \sim 10^{29} \text{ s} \left(\frac{M_1}{1 \text{ PeV}} \right) \left(\frac{\sqrt{\sum_i |y_{1i}|^2}}{10^{-29}} \right)^{-2}$$

Decay modes and branching fractions

$$\begin{array}{cccc}
e^{\pm}W^{\mp} & \nu_{e}Z, \bar{\nu}_{e}Z & \nu_{e}h, \bar{\nu}_{e}h \\
\mu^{\pm}W^{\mp} & \nu_{\mu}Z, \bar{\nu}_{\mu}Z & \nu_{\mu}h, \bar{\nu}_{\mu}h \\
\tau^{\pm}W^{\mp} & \nu_{\tau}Z, \bar{\nu}_{\tau}Z & \nu_{\tau}h, \bar{\nu}_{\tau}h \\
\end{array}$$

$$\begin{array}{ccccc}
0.50 & \vdots & 0.25 & \vdots & 0.25
\end{array}$$

c.f.) goldstone boson equivalence theorem 26 / 31]

Decay of dark matter

$$\mathcal{L} \ni -y_{\nu,1j}HN_1\ell_j - \frac{M_1}{2}N_1^2$$

Lifetime

$$au_{N_1} \sim 10^{29} \; \mathrm{s} \left(rac{M_1}{1 \; \mathrm{PeV}}
ight) \left(rac{\sqrt{\sum_i |y_{1i}|^2}}{10^{-29}}
ight)^{-2}$$

Decay modes and branching fractions

$$e^{\pm}W^{\mp}$$
 $\nu_{e}Z$, $\bar{\nu}_{e}Z$ $\nu_{e}h$, $\bar{\nu}_{e}h$ 0. $\mu^{\pm}W^{\mp}$ $\nu_{\mu}Z$, $\bar{\nu}_{\mu}Z$ $\nu_{\mu}h$, $\bar{\nu}_{\mu}h$ 0. $\tau^{\pm}W^{\mp}$ $\nu_{\tau}Z$, $\bar{\nu}_{\tau}Z$ $\nu_{\tau}h$, $\bar{\nu}_{\tau}h$ 0.

hierarchy 0.68 $0.24 + 0.02 \cos \delta$

0.08-0.02 $\cos \delta$

0.02

0.38

0.60

Neutrino energy flux at the decay time

Energy spectrum at the decay time

Calculation of number of events

Neutrino flux at the earth

Number desity of DM

Number of neutrino per energy per time

$$\frac{d\Phi}{dE} = \int d\Omega \int dr \; \frac{1}{4\pi} \times \frac{\rho(r,\theta,\phi)}{M_N} \times \frac{1}{\tau_N} \frac{dN}{dE} \quad \begin{cases} \cdot & \text{Contribution from our galaxy} \\ \cdot & \text{Extra galactic contribution} \end{cases}$$

Number of expected observed event at the IceCube

$$N_{\rm obs} = 988 {
m days} imes \int dE \left(\sigma_{\rm eff}(E) rac{d\Phi}{dE}
ight)$$

 σ_{eff} is effective area for neutrino energy E.

[IceCube collaboration arxiv:1311.5238]

Number of events

[Higaki, Kitano, RS (2014)]

For Normal hierarchy,

$$N(1 \text{ PeV} \le E_{\nu}) = 5.0 \times \left(\frac{\tau_{N_1}}{10^{28} \text{ s}}\right) = 3.0 \times \left(\frac{\tau_{N_1}}{1.6 \times 10^{28} \text{ s}}\right)$$

For Inverted hierarchy,

$$N(1 \text{ PeV} \le E_{\nu}) = 5.6 \times \left(\frac{\tau_{N_1}}{10^{28} \text{ s}}\right) = 3.0 \times \left(\frac{\tau_{N_1}}{1.9 \times 10^{28} \text{ s}}\right)$$

PeV dark matter with its lifetime to be around 10²⁸ s can explains the event excess at the IceCube experiment.

Summary

We consider a simple extension of the SM:

- Three right-handed neutrinos (N₁, N₂, N₃)
- B-L gauge symmetry and B-L Higgs boson (φ_{B-L})
- Approximate Z₂ parity for N₁

Our model explains,

Inflation
 Driven by B-L Higgs boson

• Dark matter \longrightarrow N₁ with M₁ \sim O(PeV)

Baryon asymmetry → Leptogenesis from N₂ decay

Neutrino mass → Seesaw from N₂ and N₃

• IceCube excess \longrightarrow Decay of N_1

A. Backup slides

Flavor structure of y11 (Normal hierarchy)

Ibarra-Casas parametrization

$$m_{\nu} = (\mathbf{U}^{\mathsf{T}} \tilde{\mathbf{y}}_{\nu}^{\mathsf{T}} \tilde{\mathbf{M}}^{-1} \tilde{\mathbf{y}}_{\nu} \mathbf{U}) \langle H \rangle^{2}$$

$$\mathbf{U} : \mathsf{PMNS} \; \mathsf{matrix}$$

$$\tilde{y}_{\nu} = \frac{1}{\langle H \rangle} \tilde{M}^{1/2} R m_{\nu}^{1/2} U^{\dagger}$$

$$R = \begin{pmatrix} 0 & \cos z & \sin z \\ 0 & -\sin z & \cos z \end{pmatrix}$$
z: a complex parameter

$$y_{\nu}^{2i} = \frac{\sqrt{M_2}}{\langle H \rangle} (\sqrt{m_2} U_{i2}^* \cos z - \sqrt{m_3} U_{i3}^* \sin z),$$

$$y_{\nu}^{3i} = \frac{\sqrt{M_3}}{\langle H \rangle} (\sqrt{m_2} U_{i2}^* \sin z + \sqrt{m_3} U_{i3}^* \cos z)$$

$$y_{\nu}^{1k} = c\epsilon^{ijk} y_{\nu}^{2i} y_{\nu}^{3j}$$
$$= \frac{c\sqrt{M_2 M_3 m_2 m_3}}{\langle H \rangle^2} \times U_{k1}$$

Flavor structure of y1k is determined by PMNS matrix and mass hierarchy.

Flavor structure of y11 (Inverted hierarchy)

Ibarra-Casas parametrization

$$m_{\nu} = (\mathbf{U}^{\mathsf{T}} \tilde{\mathbf{y}}_{\nu}^{\mathsf{T}} \tilde{\mathbf{M}}^{-1} \tilde{\mathbf{y}}_{\nu} \mathbf{U}) \langle H \rangle^{2}$$

$$\mathbf{U} : \mathsf{PMNS} \; \mathsf{matrix}$$

$$\tilde{y}_{\nu} = \frac{1}{\langle H \rangle} \tilde{M}^{1/2} R m_{\nu}^{1/2} U^{\dagger}$$

$$R = \begin{pmatrix} \cos z & \sin z & 0 \\ -\sin z & \cos z & 0 \end{pmatrix}$$
z: a complex parameter

$$y_{\nu}^{2i} = \frac{\sqrt{M_2}}{\langle H \rangle} (\sqrt{m_1} U_{i1}^* \cos z - \sqrt{m_2} U_{i2}^* \sin z),$$

$$y_{\nu}^{3i} = \frac{\sqrt{M_3}}{\langle H \rangle} (\sqrt{m_1} U_{i1}^* \sin z + \sqrt{m_2} U_{i2}^* \cos z)$$

$$y_{\nu}^{1k} = c\epsilon^{ijk} y_{\nu}^{2i} y_{\nu}^{3j}$$
$$= \frac{c\sqrt{M_2 M_3 m_1 m_2}}{\langle H \rangle^2} \times U_{k3}$$

Flavor structure of y1k is determined by PMNS matrix and mass hierarchy.

Upper bound on ε

$$y_{1i} \simeq 0, M_2 \ll M_3$$

$$\epsilon = \frac{\Gamma(N_2 \to \ell H) - \Gamma(N_2 \to \bar{\ell} H^{\dagger})}{\Gamma(N_2 \to \ell H) + \Gamma(N_2 \to \bar{\ell} H^{\dagger})} \simeq -\frac{3}{16\pi} \frac{\text{Im}(y_{\nu} y_{\nu}^{\dagger})_{23}^2}{(y_{\nu} y_{\nu}^{\dagger})_{22}} \frac{M_2}{M_3}$$

[Covi, Roulet, Vissani (1996)]

Normal hierarchy

$$\epsilon \simeq -\frac{3}{16\pi} \frac{M_2}{v^2} \frac{\text{Im}[m_2^2 \cos^2 z + m_3^2 \sin^2 z]}{m_2 |\cos z|^2 + m_3 |\sin z|^2}$$

Inverted hierarchy

$$\epsilon \simeq -\frac{3}{16\pi} \frac{M_2}{v^2} \frac{\text{Im}[m_1^2 \cos^2 z + m_2^2 \sin^2 z]}{m_1 |\cos z|^2 + m_2 |\sin z|^2}$$

$$|\epsilon| < \frac{3M_2}{16\pi v^2}(m_2 - m_1)$$

[Harigaya, Ibe, Yanagida (2012)]

(z : a complex parameter)

Decay time of N₂

For N₂ dominant era,

$$H = \Gamma_{\phi} \left(\frac{a}{a_{\phi}}\right)^{-2} \xrightarrow{a_{\text{nonrela}}/a_{\phi} \sim m_{\phi}/M_{2}} t_{\text{nonrela}}^{-1} \sim \Gamma_{\phi} \left(\frac{m_{\phi}}{M_{2}}\right)^{-2}$$

The time when N₂ becomes non-relativistic.

a) $t_{\text{nonrela}} > \Gamma_2^{-1}$: N_2 decays when N_2 is relativistic.

$$\frac{n_{N_2}}{s} \sim \frac{T_{\phi}}{m_{\phi}}$$

b) $t_{\text{nonrela}} < \Gamma_2^{-1} : N_2 \text{ decays when } N_2 \text{ is non-relativistic.}$

$$\frac{n_{N_2}}{s} \sim \frac{T_2}{M_2} \sim \frac{T_{\phi}}{m_{\phi}} \Delta$$

$$\Delta = \Gamma_2 t_{\text{nonrela}} = \frac{\Gamma_2}{\Gamma_\phi} \frac{m_\phi^2}{M_2^2} < 1$$

Everything is diluted by entropy production!

Effect of neutrino oscillation

Energy spectrum at the decay time (simulated by PYTHIA 8.1)

Normal hierarchy

Inverted hierarchy

Neutrino energy flux at the Earth

Neutrino flux at the Earth =
$$\frac{d\Phi_{halo}}{dE_{\nu}} + \frac{d\Phi_{eg}}{dE_{\nu}}$$

Our galaxy

Contribution from our galaxy

$$\frac{d\Phi_{\text{halo}}}{dE_{\nu}} = D_{\text{halo}} \frac{dN_{\nu}}{dE_{\nu}}$$

$$D_{\text{halo}} = \frac{1}{4\pi} \int_{-1}^{1} d\sin\theta \int_{0}^{2\pi} \left(\frac{1}{4\pi M_{1} \tau_{N_{1}}} \int_{0}^{\infty} ds \rho_{\text{halo}}(r(s, \theta, \phi)) \right)$$

$$r(s, \theta, \phi) = \sqrt{s^{2} + R_{\odot}^{2} - 2sR_{\odot}\cos\theta\cos\phi}$$

Extra galactic contribution

$$\frac{d\Phi_{\rm eg}}{dE_{\nu}} = \frac{\Omega_{\rm DM}\rho_{c}c}{4\pi M_{1}\tau_{N_{1}}} \int_{0}^{\infty} \frac{dz}{H(z)} e^{-s(E_{\nu},z)} \frac{dN_{\nu}}{dE_{\nu}} \bigg|_{E=(1+z)E_{\nu}}$$

Number of events

For Normal hierarchy,

$$N(30 \text{ TeV} \le E_{\nu}) = 9.7 \times \left(\frac{\tau_{N_1}}{10^{28} \text{ s}}\right) = 22 \times \left(\frac{\tau_{N_1}}{0.44 \times 10^{28} \text{ s}}\right)$$

$$N(1 \text{ PeV} \le E_{\nu}) = 5.0 \times \left(\frac{\tau_{N_1}}{10^{28} \text{ s}}\right) = 3.0 \times \left(\frac{\tau_{N_1}}{1.6 \times 10^{28} \text{ s}}\right)$$

PeV dark matter with its lifetime to be around 10²⁸ s can explains the event excess at the IceCube experiment.

Number of events

For Inverted hierarchy,

$$N(30 \text{ TeV} \le E_{\nu}) = 12.4 \times \left(\frac{\tau_{N_1}}{10^{28} \text{ s}}\right) = 22 \times \left(\frac{\tau_{N_1}}{0.56 \times 10^{28} \text{ s}}\right)$$
 $N(1 \text{ PeV} \le E_{\nu}) = 5.6 \times \left(\frac{\tau_{N_1}}{10^{28} \text{ s}}\right) = 3.0 \times \left(\frac{\tau_{N_1}}{1.9 \times 10^{28} \text{ s}}\right)$

PeV dark matter with its lifetime to be around 10²⁸ s can explains the event excess at the IceCube experiment.